The Journal of organic chemistry

Stereocontrolled synthesis of cis-dibenzoquinolizine chlorofumarates: curare-like agents of ultrashort duration.

PMID 11348135


The quaternizations of dibenzoquinolizines 9 and 14 with 3-halo-1-propanols are highly cis-selective (94-100% cis), results consistent with the N-methylation of O-methylcapaurine (7b), but in contrast to the proposed trans-stereochemistry of dibenzo[a,h]quinolizine methiodide 10 and the analogous quaternizations of 1-benzyl- and 1-phenylisoquinoline congeners 5b and 5c. In this report, we describe stereoselective preparation of the unique cis-dibenzoquinolizinium propanols 15 and 16and their transformation into bis- and mixed-onium chlorofumarates 19, 20ab, and 26. Dibenzo[a,g]quinolizinium propanol 15 was prepared enantioselectively in three steps from dihydroisoquinoline 11. Asymmetric transfer hydrogenation of 11 in the presence of triethylamine/formic acid and Noyori's chiral ruthenium catalyst 12 produced R-(-)-5',8-dimethoxynorlaudanosine (13) in 98% yield and 87% ee. Pictet-Spengler cyclization of 13 in formalin/formic acid afforded the dibenzo[a,g]quinolizine 14 in 65% yield. Quaternization of 14 with 3-chloro-1-propanol under Finkelstein conditions generated cis-dibenzoquinolizinium propanol 15 in 85% yield with >94% cis-selectivity. The cis-dibenzo[a,h]quinolizinium propanol 16 was obtained as a single stereoisomer by reaction of the known tetramethoxyquinolizine 9 with neat 3-iodo-1-propanol. Bis-onium chlorofumarates 18 and 19 and the mixed-onium derivative 20ab were prepared by a pool synthesis procedure from (1R)-trans-6a, 16, and chlorofumaryl chloride (17). Mixed-onium alpha-chlorofumarate 26 was synthesized from (1S)-trans-6d, 15 and (+/-)-trans-2,3-dichlorosuccinic anhydride (22), employing a recently disclosed chlorofumarate mixed-diester synthesis. The title compounds (19, 20ab, and 26) displayed curare-like effects of ultrashort duration in rhesus monkeys.

Related Materials

Product #



Molecular Formula

Add to Cart

3-Iodo-1-propanol, 97%