EMAIL THIS PAGE TO A FRIEND

Chembiochem : a European journal of chemical biology

A biosynthetic pathway to isovaleryl-CoA in myxobacteria: the involvement of the mevalonate pathway.


PMID 15619721

Abstract

A biosynthetic shunt pathway branching from the mevalonate pathway and providing starter units for branched-chain fatty acid and secondary metabolite biosynthesis has been identified in strains of the myxobacterium Stigmatella aurantiaca. This pathway is upregulated when the branched-chain alpha-keto acid dehydrogenase gene (bkd) is inactivated, thus impairing the normal branched-chain amino acid degradation process. We previously proposed that, in this pathway, isovaleryl-CoA is derived from 3,3-dimethylacrylyl-CoA (DMA-CoA). Here we show that DMA-CoA is an isomerization product of 3-methylbut-3-enoyl-CoA (3MB-CoA). This compound is directly derived from 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) by a decarboxylation/ dehydration reaction resembling the conversion of mevalonate 5-diphosphate to isopentenyl diphosphate. Incubation of cell-free extracts of a bkd mutant with HMG-CoA gave product(s) with the molecular mass of 3MB-CoA or DMA-CoA. The shunt pathway most likely also operates reversibly and provides an alternative source for the monomers of isoprenoid biosynthesis in myxobacteria that utilize L-leucine as precursor.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

I9381
Isovaleryl coenzyme A lithium salt hydrate, ≥90%
C26H44N7O17P3S · xLi+ · yH2O