Journal of the American Chemical Society

Spontaneous CdTe --> alloy --> CdS transition of stabilizer-depleted CdTe nanoparticles induced by EDTA.

PMID 16719484


CdTe nanoparticles stabilized by l-cysteine are chemically transformed into CdS nanoparticles of the same diameter via an intermediate CdTeS alloy without any auxiliary source of sulfur. The reaction is induced by ethylenediaminetetraacetic acid dipotassium salt dehydrate (EDTA), which was demonstrated experimentally to act as a catalyst by partially removing thiol stabilizers from the nanoparticle surface. It is hypothesized that addition of EDTA facilitates Te(2-) release, and oxidation of Te(2-) drives the nanoparticle transition process. Unlike many reports on reactions catalyzed by nanocolloids, this is likely to be the first observation of a catalytic reaction in which nanoparticles function as a substrate rather than a catalyst. It opens new pathways for the synthesis of novel nanoscale II-VI and other semiconductors and represents an interesting case of chemical processes in nanocolloids with reactivity increased by depletion of the surface layer of thiol stabilizers. This includes but is not limited to accurate control over the particle composition and crystallization rate. The slow rate of the CdTe --> alloy --> CdS transition is important for minimizing defects in the crystal lattice and results in a substantial increase of the quantum yield of photoluminescence over the course of the transition.

Related Materials

Product #



Molecular Formula

Add to Cart

Ethylenediaminetetraacetic acid dipotassium salt dihydrate, BioUltra, ≥99.0% (KT)
C10H14K2N2O8 · 2H2O