EMAIL THIS PAGE TO A FRIEND

Cancer research

Evidence that in xeroderma pigmentosum variant cells, which lack DNA polymerase eta, DNA polymerase iota causes the very high frequency and unique spectrum of UV-induced mutations.


PMID 17409408

Abstract

Xeroderma pigmentosum variant (XPV) patients have normal DNA excision repair, yet are predisposed to develop sunlight-induced cancer. They exhibit a 25-fold higher than normal frequency of UV-induced mutations and very unusual kinds (spectrum), mainly transversions. The primary defect in XPV cells is the lack of functional DNA polymerase (Pol) eta, the translesion synthesis DNA polymerase that readily inserts adenine nucleotides opposite photoproducts involving thymine. The high frequency and striking difference in kinds of UV-induced mutations in XPV cells strongly suggest that, in the absence of Pol eta, an abnormally error-prone polymerase substitutes. In vitro replication studies of Pol iota show that it replicates past 5'T-T3' and 5'T-U3' cyclobutane pyrimidine dimers, incorporating G or T nucleotides opposite the 3' nucleotide. To test the hypothesis that Pol iota causes the high frequency and abnormal spectrum of UV-induced mutations in XPV cells, we identified an unlimited lifespan XPV cell line expressing two forms of Pol iota, whose frequency of UV-induced mutations is twice that of XPV cells expressing one form. We eliminated expression of one form and compared the parental cells and derivatives for the frequency and kinds of UV-induced mutations. All exhibited similar sensitivity to the cytotoxicity of UV((254 nm)), and the kinds of mutations induced were identical, but the frequency of mutations induced in the derivatives was reduced to