Molecular cancer

MOZ-TIF2 repression of nuclear receptor-mediated transcription requires multiple domains in MOZ and in the CID domain of TIF2.

PMID 17697320


Fusion of the MOZ and TIF2 genes by an inv (8) (p11q13) translocation has been identified in patients with acute mixed-lineage leukemia. Characterization of the molecular structure of the MOZ-TIF2 fusion protein suggested that the fusion protein would effect on nuclear receptor signaling. A series of deletions from the N-terminus of the MOZ-TIF2 fusion protein demonstrated that the MOZ portion is essential for nuclear localization of the fusion protein. Transient expression of MOZ-TIF2 dramatically decreased both basal and estradiol inducible reporter gene activity in an estrogen receptor element (ERE) driven luciferase reporter system and decreased androgen-inducible reporter gene activity in an androgen receptor element (ARE) luciferase reporter system. Deletions in the MOZ portion of the MOZ-TIF2 fusion protein reduced the suppression in the ER reporter system. Stable expression of MOZ-TIF2 inhibited retinoic acid (RA) inducible endogenous CD11b and C/EBPbeta gene response. The suppression of the reporter systems was released with either a CID domain deletion or with mutations of leucine-rich repeats in the TIF2 portion of MOZ-TIF2. The co-expression of TIF2, but not CBP, with MOZ-TIF2 partially restored the inhibition of the reporter systems. In addition, analysis of protein interactions demonstrated MOZ-TIF2 interaction with the C-terminus of CBP through both the MOZ and TIF2 portions of the fusion protein. MOZ-TIF2 inhibited nuclear receptor-mediated gene response by aberrant recruitment of CBP and both the MOZ and TIF2 portions are required for this inhibition.