EMAIL THIS PAGE TO A FRIEND

Neural development

Analysis of Lrrn1 expression and its relationship to neuromeric boundaries during chick neural development.


PMID 17973992

Abstract

The Drosophila leucine-rich repeat proteins Tartan (TRN) and Capricious (CAPS) mediate cell affinity differences during compartition of the wing imaginal disc. This study aims to identify and characterize the expression of a chick orthologue of TRN/CAPS and examine its potential function in relation to compartment boundaries in the vertebrate central nervous system. We identified a complementary DNA clone encoding Leucine-rich repeat neuronal 1 (Lrrn1), a single-pass transmembrane protein with 12 extracellular leucine-rich repeats most closely related to TRN/CAPS. Lrrn1 is dynamically expressed during chick development, being initially localized to the neural plate and tube, where it is restricted to the ventricular layer. It becomes downregulated in boundaries following their formation. In the mid-diencephalon, Lrrn1 expression prefigures the position of the anterior boundary of the zona limitans intrathalamica (ZLI). It becomes progressively downregulated from the presumptive ZLI just before the onset of expression of the signalling molecule Sonic hedgehog (Shh) within the ZLI. In the hindbrain, downregulation at rhombomere boundaries correlates with the emergence of specialized boundary cell populations, in which it is subsequently reactivated. Immunocolocalization studies confirm that Lrrn1 protein is endocytosed from the plasma membrane and is a component of the endosomal system, being concentrated within the early endosomal compartment. Chick Lrrn1 is expressed in ventricular layer neuroepithelial cells and is downregulated at boundary regions, where neurogenesis is known to be delayed, or inhibited. The timing of Lrrn1 downregulation correlates closely with the activation of signaling molecule expression at these boundaries. This expression is consistent with the emergence of secondary organizer properties at boundaries and its endosomal localisation suggests that Lrrn1 may regulate the subcellular localisation of specific components of signalling or cell-cell recognition pathways in neuroepithelial cells.