EMAIL THIS PAGE TO A FRIEND

The Journal of cell biology

Calreticulin inhibits commitment to adipocyte differentiation.


PMID 18606846

Abstract

Calreticulin, an endoplasmic reticulum (ER) resident protein, affects many critical cellular functions, including protein folding and calcium homeostasis. Using embryonic stem cells and 3T3-L1 preadipocytes, we show that calreticulin modulates adipogenesis. We find that calreticulin-deficient cells show increased potency for adipogenesis when compared with wild-type or calreticulin-overexpressing cells. In the highly adipogenic crt(-/-) cells, the ER lumenal calcium concentration was reduced. Increasing the ER lumenal calcium concentration led to a decrease in adipogenesis. In calreticulin-deficient cells, the calmodulin-Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) pathway was up-regulated, and inhibition of CaMKII reduced adipogenesis. Calreticulin inhibits adipogenesis via a negative feedback mechanism whereby the expression of calreticulin is initially up-regulated by peroxisome proliferator-activated receptor gamma (PPAR gamma). This abundance of calreticulin subsequently negatively regulates the expression of PPAR gamma, lipoprotein lipase, CCAAT enhancer-binding protein alpha, and aP2. Thus, calreticulin appears to function as a Ca(2+)-dependent molecular switch that regulates commitment to adipocyte differentiation by preventing the expression and transcriptional activation of critical proadipogenic transcription factors.