EMAIL THIS PAGE TO A FRIEND

Molecular cancer research : MCR

Fish oil inhibits human lung carcinoma cell growth by suppressing integrin-linked kinase.


PMID 19147542

Abstract

We previously showed that synthetic peroxisome proliferator-activated receptor gamma (PPARgamma) ligands inhibit non-small cell lung carcinoma (NSCLC) cell growth through multiple signaling pathways. Here, we show that dietary compounds, such as fish oil (which contains certain kinds of fatty acids like omega3 and omega6 polyunsaturated fatty acids), also inhibit NSCLC cell growth by affecting PPARgamma and by inhibiting the expression of integrin-linked kinase (ILK). Exogenous expression of ILK overcame, whereas silencing ILK enhanced the inhibitory effect of fish oil on cell growth. The inhibitor of p38 mitogen-activated protein kinase, SB239023, abrogated the inhibitory effect of fish oil on ILK expression, whereas the inhibitor of extracellular signal-regulated kinase, PD98059, had no effect. Transient transfection experiments showed that fish oil reduced ILK promoter activity, and this effect was abolished by AP-2alpha small interfering RNA and SB239023 and by deletion of a specific portion of the ILK gene promoter. Western blot analysis and gel mobility shift assay showed that fish oil significantly induced AP-2alpha protein expression and AP-2 DNA-binding activity in the ILK gene promoter and that this was dependent on PPARgamma activation. Blockade of AP-2alpha abrogated the effect of fish oil on ILK expression and on cell growth, whereas exogenous expression of AP-2alpha enhanced cell growth in the setting of fish oil exposure. Taken together, these findings show that fish oil inhibits ILK expression through activation of PPARgamma-mediated and p38 mitogen-activated protein kinase-mediated induction of AP-2alpha. In turn, this leads to inhibition of NSCLC cell proliferation. This study unveils a novel mechanism by which fish oil inhibits human lung cancer cell growth.