The Journal of biological chemistry

Homotypic cell to cell cross-talk among human natural killer cells reveals differential and overlapping roles of 2B4 and CD2.

PMID 20813844


Human natural killer (NK) cells express an abundant level of 2B4 and CD2 on their surface. Their counter-receptors, CD48 and CD58, are also expressed on the NK cell surface, raising a question about the functional consequences of potential 2B4/CD48 and CD2/CD58 interactions. Using blocking antibodies specific to each receptor, we demonstrated that both 2B4/CD48 and CD2/CD58 interactions were essential for the development of NK effector functions: cytotoxicity and cytokine secretion. However, only 2B4/CD48, but not CD2/CD58, interactions were shown to be critical for the optimal NK cell proliferation in response to interleukin (IL)-2. IL-2-activated NK cells cultured in the absence of 2B4/CD48 or CD2/CD58 interactions were severely impaired for their ability to induce intracellular calcium mobilization and subsequent ERK activation upon tumor target exposure, suggesting that the early signaling pathway of NK receptors leading to impaired cytolysis and interferon (IFN)-γ secretion was inhibited. Nevertheless, these defects did not fully account for the reduced proliferation of NK cells in the absence of 2B4/CD48 interactions, because anti-CD2 or anti-CD58 monoclonal antibody (mAb)-treated NK cells, showing defective signaling and effector functions, displayed normal proliferation upon IL-2 stimulation. These results propose the signaling divergence between pathways leading to cell proliferation and cytotoxicity/cytokine release, which can be differentially regulated by 2B4 and CD2 during IL-2-driven NK cell activation. Collectively, these results reveal the importance of homotypic NK-to-NK cell cross-talk through 2B4/CD48 and CD2/CD58 pairs and further present their differential and overlapping roles in human NK cells.

Related Materials

Product #



Molecular Formula

Add to Cart

5086 CD2 human, recombinant, expressed in E. coli, 0.5 mg protein/mL