EMAIL THIS PAGE TO A FRIEND

Glia

Impact of vegf on astrocytes: analysis of gap junctional intercellular communication, proliferation, and motility.


PMID 22431192

Abstract

The purpose of the present study was to investigate the effects of vascular endothelial growth factor (VEGF) on gap junctional intercellular communication (GJIC), cell proliferation, and cell dynamics in primary astrocytes. VEGF is known as a dimeric polypeptide that potentially binds to two receptors, VEGFR-1 and VEGFR-2, however many effects are mediated by VEGFR-2, for example, actin polymerization, forced cell migration, angiogenesis, and cell proliferation. Recently it has been shown that in case of hypoxia, ischemia or injury VEGF is upregulated to stimulate angiogenesis and cell proliferation. Besides this, VEGF reveals a potent therapeutical target for averting tumor vascularization, emerging in bevacizumab, the first humanized anti-VEGF-A antibody for treating recurrent Glioblastoma multiforme. To expand our knowledge about VEGF effects in glial cells, we cultivated rat astrocytes in medium containing VEGF for 1 and 2 days. To investigate the effects of VEGF on GJIC, we microinjected neurobiotin into a single cell and monitored dye-spreading into adjacent cells. These experiments showed that VEGF significantly enhances astrocytic GJIC compared with controls. Cell proliferation measured by BrdU-labeling also revealed a significant increase of astrocytic mitose rates subsequent to 1 day of VEGF exposure, whereas longer VEGF treatment for 2 days did not have additive effects. To study cell-dynamics of astrocytes subsequent to VEGF treatment, we additionally transfected astrocytes with LifeAct-RFP. Live-cell imaging and quantitative analysis of these cells with aid of confocal laser scanning microscopy revealed higher process movement of VEGF-treated astrocytes. In conclusion, VEGF strongly affects cell proliferation, GJIC, and motility in astrocytes.