Integrated environmental assessment and management

A meta-analytic review of life cycle assessment and flow analyses studies of palm oil biodiesel.

PMID 22941969


This work reviews and performs a meta-analysis of the recent life cycle assessment and flow analyses studies palm oil biodiesel. The best available data and information are extracted, summarized, and discussed. Most studies found palm oil biodiesel would produce positive energy balance with an energy ratio between 2.27 and 4.81, and with a net energy production of 112 GJ ha(-1) y(-1). With the exception of a few studies, most conclude that palm oil biodiesel is a net emitter of greenhouse gases (GHG). The origin of oil palm plantation (planted area) is the foremost determinant of GHG emissions and C payback time (CPBT). Converting peatland forest results in GHG emissions up to 60 tons CO(2) equivalent (eq) ha(-1) y(-1) leading to 420 years of CPBT. In contrast, converting degraded land or grassland for plantation can positively offset the system to become a net sequester of 5 tons CO(2) eq ha(-1) y(-1). Few studies have discussed cradle-to-grave environmental impacts such as acidification, eutrophication, toxicity, and biodiversity, which open opportunity for further studies.

Related Materials