EMAIL THIS PAGE TO A FRIEND

PLoS currents

The C2A domain in dysferlin is important for association with MG53 (TRIM72).


PMID 23145354

Abstract

In skeletal muscle, Mitsugumin 53 (MG53), also known as muscle-specific tripartite motif 72, reportedly interacts with dysferlin to regulate membrane repair. To better understand the interactions between dysferlin and MG53, we conducted immunoprecipitation (IP) and pull-down assays. Based on IP assays, the C2A domain in dysferlin associated with MG53. MG53 reportedly exists as a monomer, a homodimer, or an oligomer, depending on the redox state. Based on pull-down assays, wild-type dysferlin associated with MG53 dimers in a Ca2+-dependent manner, but MG53 oligomers associated with both wild-type and C2A-mutant dysferlin in a Ca2+-independent manner. In pull-down assays, a pathogenic missense mutation in the C2A domain (W52R-C2A) inhibited the association between dysferlin and MG53 dimers, but another missense mutation (V67D-C2A) altered the calcium sensitivity of the association between the C2A domain and MG53 dimers. In contrast to the multimers, the MG53 monomers did not interact with wild-type or C2A mutant dysferlin in pull-down assays. These results indicated that the C2A domain in dysferlin is important for the Ca2+-dependent association with MG53 dimers and that dysferlin may associate with MG53 dimers in response to the influx of Ca2+ that occurs during membrane injury. To examine the biological role of the association between dysferlin and MG53, we co-expressed EGFP-dysferlin with RFP-tagged wild-type MG53 or RFP-tagged mutant MG53 (RFP-C242A-MG53) in mouse skeletal muscle, and observed molecular behavior during sarcolemmal repair; it has been reported that the C242A-MG53 mutant forms dimers, but not oligomers. In response to membrane wounding, dysferlin accumulated at the injury site within 1 second; this dysferlin accumulation was followed by the accumulation of wild-type MG53. However, accumulation of RFP-C242A MG53 at the wounded site was impaired relative to that of RFP-wild-type MG53. Co-transfection of RFP-C242A MG53 inhibited the recruitment of dysferlin to the sarcolemmal injury site. We also examined the molecular behavior of GFP-wild-type MG53 during sarcolemmal repair in dysferlin-deficient mice which show progressive muscular dystrophy, and found that GFP-MG53 accumulated at the wound similar to wild-type mice. Our data indicate that the coordination between dysferlin and MG53 plays an important role in efficient sarcolemmal repair.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

S6814
SynaptoGreen C4, ≥95% (HPLC), solid
C30H49Br2N3