Journal of tissue engineering and regenerative medicine

Microwave-assisted fabrication of chitosan-hydroxyapatite superporous hydrogel composites as bone scaffolds.

PMID 23239627


In this study, a novel scaffold fabrication method was developed by combining microwave irradiation and gas foaming. Chitosan superporous hydrogels (SPHs) and chitosan-hydroxyapatite (HA) superporous hydrogel composites (SPHCs) were prepared by using this method in the presence of crosslinking agent, glyoxal, and a gas-blowing agent, NaHCO3. In order to examine the effect of HA on composite structure and cellular behaviour, two types of HA particles, i.e. spherical beads in 45-80 µm diameter and powder form, were used. While rapid heating with microwave irradiation enhances gas blowing, pH increment, which is accelerated by NaHCO3 decomposition, provides better crosslinking. Thus, interconnected and well-established macroporous hydrogels/hydrogel composites were produced easily and rapidly (~1 min). Cell culture studies, which were carried out under static and dynamic conditions with MC3T3-E1 pre-osteoblastic cells, indicated that chitosan-HA bead SPHCs supported cellular proliferation and osteoblastic differentiation better than chitosan SPHs and chitosan-HA powder SPHCs. In conclusion, simultaneous gas foaming and microwave crosslinking can be evaluated for the preparation of composite scaffolds which have superior properties for bone tissue engineering.