EMAIL THIS PAGE TO A FRIEND

Journal of proteomics

Proteomic analysis of mycelium and secretome of different Botrytis cinerea wild-type strains.


PMID 23811051

Abstract

The necrotrophic fungus Botrytis cinerea is a very damaging phytopathogen of wide host range and environmental persistence. It is difficult to control because of its genetic versatility, expressed in the many phenotypical differences among isolates. The genomes of the B. cinerea B05.10 and T4 strains have been recently sequenced, becoming a model system for necrotrophic pathogens, and thus opening new alternatives for functional genomics analysis. In this work, the mycelium and secreted proteome of six wild-type strains with different host range, and grown in liquid minimal medium, have been analyzed by using complementary gel-based (1-DE and 2-DE) and gel-free/label-free (nUPLC-MS(E)) approaches. We found differences in the protein profiles among strains belonging to both the mycelium and the secretome. A total of 47 and 51 variable proteins were identified in the mycelium and the secretome, respectively. Some of them, such as malate dehydrogenase or peptidyl-prolyl cis-trans isomerase from the mycelium, and endopolygalacturonase, aspartic protease or cerato-platanin protein from the secretome have been reported as virulence factors, which are involved in host-tissue invasion, pathogenicity or fungal development. The necrotrophic fungus Botrytis cinerea is an important phytopathogen of wide host range and environmental persistence, causing substantial economic losses worldwide. In this work, the mycelium and secreted proteome of six B. cinerea wild-type strains with different host range have been analyzed by using complementary gel-based and gel-free/label-free approaches. Fungal genetic versatility was confirmed at the proteome level for both mycelium proteome and secreted proteins. A high number of hypothetical proteins with conserved domains related to toxin compounds or to unknown functions were identified, having qualitative differences among strains. The identification of hypothetical proteins suggests that the B. cinerea strains differ mostly in processes involved in adaptation to a particular environment or a growth condition, rather than in essential metabolic reactions. Proteomics can help in the identification of variable proteins related to the infection and colonization of host plant tissues, as well as of virulence and aggressiveness factors among different B. cinerea wild-type strains. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.