Biopharmaceutics & drug disposition

Addition of amino acid moieties to lapatinib increases the anti-cancer effect via amino acid transporters.

PMID 24151179


Anti-cancer agents delivered to cancer cells often show multi-drug resistance (MDR) due to expulsion of the agents. One way to address this problem is to increase the accumulation of anti-cancer agents in cells via amino acid transporters. Thus, val-lapatinib and tyr-lapatinib were newly synthesized by adding valine and tyrosine moieties, respectively, to the parent anti-cancer agent lapatinib without stability issues in rat plasma. Val-lapatinib and tyr-lapatinib showed enhanced anti-cancer effects versus the parent lapatinib in various cancer cell lines, including human breast cancer cells (MDA-MB-231, MCF7) and lung cancer cells (A549), but not in non-cancerous MDCK-II cells. A glutamine uptake study revealed that both val-lapatinib and tyr-lapatinib, but not the parent lapatinib, inhibited glutamine transport in MDA-MB-231 and MCF7 cells, suggesting the involvement of amino acid transporters. In conclusion, val-lapatinib and tyr-lapatinib have enhanced anti-cancer effects, likely due to an increased uptake of the agents into cancer cells via amino acid transporters. The present data suggest that amino acid transporters may be an effective drug delivery target to increase the uptake of anti-cancer agents, leading to one method of overcoming MDR in cancer cells.