EMAIL THIS PAGE TO A FRIEND

Immunology

Human blood dendritic cell subsets exhibit discriminative pattern recognition receptor profiles.


PMID 24444310

Abstract

Dendritic cells (DCs) operate as the link between innate and adaptive immunity. Their expression of pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) and C-type lectin receptors (CLRs), enables antigen recognition and mediates appropriate immune responses. Distinct subsets of human DCs have been identified; however their expression of PRRs is not fully clarified. Expressions of CLRs by DC subpopulations, in particular, remain elusive. This study aimed to identify and compare PRR expressions on human blood DC subsets, including CD1c(+) , CD141(+) and CD16(+) myeloid DCs and CD123(+) plasmacytoid DCs, in order to understand their capacity to recognize different antigens as well as their responsiveness to PRR-directed targeting. Whole blood was obtained from 13 allergic and six non-allergic individuals. Mononuclear cells were purified and multi-colour flow cytometry was used to assess the expression of 10 CLRs and two TLRs on distinct DC subsets. PRR expression levels were shown to differ between DC subsets for each PRR assessed. Furthermore, principal component analysis and random forest test demonstrated that the PRR profiles were discriminative between DC subsets. Interestingly, CLEC9A was expressed at lower levels by CD141(+) DCs from allergic compared with non-allergic donors. The subset-specific PRR expression profiles suggests individual responsiveness to PRR-targeting and supports functional specialization.