EMAIL THIS PAGE TO A FRIEND

Journal of cellular physiology

Wnt5a suppresses colon cancer by inhibiting cell proliferation and epithelial-mesenchymal transition.


PMID 24464650

Abstract

Colon cancer remains one of the lethal malignancies in the world. Aberrant activation of canonical Wnt/β-catenin signaling pathway has been observed in colon cancer. In contrast, the non-canonical Wnt signaling functions remain obscure. Wnt5a is a representative non-canonical Wnt ligand which has gained extensive attention nowadays. Wnt5a has been shown to play an important role in EMT in prostate cancer and melanoma, but its role in colon cancer is still ambiguous. Here we have evaluated Wnt5a expression in a large cohort of 217 colon cancers by immunohistochemistry and analyzed its correlation with clinicopathologic characteristics. We found that expression of Wnt5a was diminished significantly in majority of primary colon cancers and negatively related with EMT biomarkers. To further enlighten the mechanism which Wnt5a regulates EMT in vitro, we established ectopic Wnt5a expression models. Protein analysis demonstrated that Wnt5a inhibited EMT and antagonized canonical Wnt signaling in colon cancer cells. Overexpression of Wnt5a impaired cell motility and invasion and inhibited cell proliferation by manipulating Bax. Moreover, Wnt5a suppressed the tumor growth in nude mice and impaired tumorigenicity in vivo. Wnt5a also induced intracellular calcium and activated non-canonical Wnt/Ca(2+) signaling in colon cancer. In summary, although Wnt5a was down-regulated in majority of colon cancers, enhanced Wnt5a expression predict preferable outcome in colon cancer patients. Our findings indicate that Wnt5a might act as tumor suppressor by inhibiting cell proliferation and attenuating EMT in colon cancer cells. Wnt5a could be used as a novel prognostic marker and/or therapeutic target for colon cancer in the future.