EMAIL THIS PAGE TO A FRIEND

PloS one

Early fish myoseptal cells: insights from the trout and relationships with amniote axial tenocytes.


PMID 24622730

Abstract

The trunk muscle in fish is organized as longitudinal series of myomeres which are separated by sheets of connective tissue called myoseptum to which myofibers attach. In this study we show in the trout that the myoseptum separating two somites is initially acellular and composed of matricial components such as fibronectin, laminin and collagen I. However, myoseptal cells forming a continuum with skeletogenic cells surrounding axial structures are observed between adjacent myotomes after the completion of somitogenesis. The myoseptal cells do not express myogenic markers such as Pax3, Pax7 and myogenin but express several tendon-associated collagens including col1a1, col5a2 and col12a1 and angiopoietin-like 7, which is a secreted molecule involved in matrix remodelling. Using col1a1 as a marker gene, we observed in developing trout embryo an initial labelling in disseminating cells ventral to the myotome. Later, labelled cells were found more dorsally encircling the notochord or invading the intermyotomal space. This opens the possibility that the sclerotome gives rise not only to skeletogenic mesenchymal cells, as previously reported, but also to myoseptal cells. We furthermore show that myoseptal cells differ from skeletogenic cells found around the notochord by the specific expression of Scleraxis, a distinctive marker of tendon cells in amniotes. In conclusion, the location, the molecular signature and the possible sclerotomal origin of the myoseptal cells suggest that the fish myoseptal cells are homologous to the axial tenocytes in amniotes.