EMAIL THIS PAGE TO A FRIEND

The Journal of antibiotics

The in vitro effects of new D186 dendrimer on virulence factors of Candida albicans.


PMID 24690909

Abstract

The emergence of drug-resistant Candida albicans strains necessitates identifying new antimycotics along with studying their modes of action. The influence of a new rationally designed dendrimer D186 containing N,N-dioctyl tail and four tryptophane residues on inhibition of planktonic cells, aspartic protease SAP5 expression and adhesion to epithelial cells was investigated. In vitro anti-Candida activities were determined against wild types, Δsap mutants and morphogenesis mutants: Δefg1, Δcph1 and Δcph1/Δefg1. MICs of D186 determined with M27-A3 protocol were in the range 2-16 μg ml(-1). Adherence assay of C. albicans to Caco-2 was performed in 24-well plate. Group I (MIC=8 μg ml(-1), inhibition=82.05-100%) was the most frequent followed by Group II (MIC=4 μg ml(-1), inhibition=99.64-100%) and Group III (MIC=2 μg ml(-1), inhibition=96.47-96.98%). SAP5 expression was analyzed using RT-PCR; relative quantification was normalized against ACT1 in cells after 18-h growth on Caco-2 cell line. D186 exhibited more potent inhibition activity (statistically significant P⩽0.05) against Δsap10 and Δsap9/Δsap10 (MIC=2 μg ml(-1)) than the remaining strains tested. Pretreating cells with D186 significantly inhibited adhesion of all Candida strains compared with their non-treated counterparts (P⩽0.05). D186 affected SAP5 expression of all strains suggesting that this gene is controlled by environmental conditions. A hypothesis can be formulated that the hydrophobicity of D186 and presence of four Trp residues favors its accumulation in the membrane causing membrane disruption, especially facilitated in mutants perturbed in the cell wall compositions. The D186 mode of action was attributed to reduced virulence in terms of adhesiveness and pathogenic potential related to SAP5 expression and morphogenesis.