Toxicology in vitro : an international journal published in association with BIBRA

Nicotine derived genotoxic effects in human primary parotid gland cells as assessed in vitro by comet assay, cytokinesis-block micronucleus test and chromosome aberrations test.

PMID 24698733


Genotoxic effects of nicotine were described in different human cells including salivary gland cells. Based on the high nicotine concentration in saliva of smokers or patients using therapeutic nicotine patches, the current study was performed to evaluate the genotoxic potential of nicotine in human salivary gland cells. Therefore, primary salivary gland cells from 10 patients undergoing parotid gland surgery were exposed to nicotine concentrations between 1 μM and 1000 μM for 1 h in the absence of exogenous metabolic activation. The acinar phenotype was proven by immunofluorescent staining of alpha-amylase. Genotoxic effects were evaluated using the Comet assay, the micronucleus test and the chromosome aberration test. Cytotoxicity and apoptosis were determined by trypan blue exclusion test and Caspase-3 assay. Nicotine was able to induce genotoxic effects in all three assays. The chromosome aberration test was the most sensitive and increases in numerical and structural (chromatid-type and chromosome-type) aberrations were seen at ≥1 μM, whereas increases in micronuclei frequency were detected at 10 μM and DNA damage as measured in the Comet assay was noted at >100 μM. No cytotoxic damage or influence of apoptosis could be demonstrated. Nicotine as a possible risk factor for tumor initiation in salivary glands is still discussed controversially. Our results demonstrated the potential of nicotine to induce genotoxic effects in salivary gland cells. These results were observed at saliva nicotine levels similar to those found after oral or transdermal exposure to nicotine and suggest the necessity of careful monitoring of the use of nicotine in humans.