EMAIL THIS PAGE TO A FRIEND

Neuropharmacology

Contrasting changes in extracellular dopamine and glutamate along the rostrocaudal axis of the anterior cingulate cortex of the rat following an acute d-amphetamine or dopamine challenge.


PMID 24747182

Abstract

There is evidence for functional specificity of subregions along the rostrocaudal axis of the anterior cingulate cortex (ACC). The subregion-specific distribution of dopaminergic afferents and glutamatergic efferents along the ACC make these obvious candidates for coding such regional responses. We investigated this possibility using microdialysis in freely-moving rats to compare changes in extracellular dopamine and glutamate in the rostral ('rACC': Cg1 and Cg3 (prelimbic area)) and caudal ('cACC': Cg1 and Cg2) ACC induced by systemic or local administration of d-amphetamine. Systemic administration of d-amphetamine (3 mg/kg, i.p.) caused a transient increase in extracellular dopamine in the rACC, but an apparent increase in the cACC of the same animals was less clearly defined. Local infusion of d-amphetamine increased dopamine efflux in the rACC, only. Glutamate efflux in the rACC was increased by local infusion of dopamine (5-50 μM), which had negligible effect in the cACC, but only systemic administration of d-amphetamine increased glutamate efflux and only in the cACC. The asymmetry in the neurochemical responses within the rACC and cACC, to the same experimental challenges, could help explain why different subregions are recruited in the response to specific environmental and somatosensory stimuli and should be taken into account when studying the regulation of neurotransmission in the ACC. This article is part of the Special Issue entitled 'CNS Stimulants'.