EMAIL THIS PAGE TO A FRIEND

The Journal of infectious diseases

ATF3 confers resistance to pneumococcal infection through positive regulation of cytokine production.


PMID 24951825

Abstract

Activating transcription factor-3 (ATF3) is known as a suppressor of cytokine production after exposure to lipopolysaccharide or during gram-negative bacterial infection. However, the mechanism by which ATF3 regulates innate immunity against gram-positive bacterial infection, particularly Streptococcus pneumoniae, remains unknown. The wild-type and ATF3 knock-out (KO) mice were infected intranasally (i.n) or intraperitoneally with S. pneumoniae, and bacterial colonization or survival rate was determined. Pneumococcal pneumonia was induced by i.n infection, and ATF3 level was determined by Western blot. ATF3 KO cells or ATF3 siRNA transfection were used to determine expression of ATF3 downstream genes. Enzyme-linked immunosorbent assay was used to examine cytokines levels. ATF3 was highly expressed in various cell lines in vitro and in many organs in vivo. Pneumolysin was a novel inducer of ATF3. Pneumococcal infection induced ATF3, which subsequently stimulated production of cytokines (tumor necrosis factor [TNF]-α, interleukin [IL]-1β, and interferon [IFN]-γ). ATF3-mediated cytokine induction protected the host from pneumococcal infection. In the pneumonia infection model, the bacterial clearance of wild-type mice was more efficient than those of ATF3 KO mice. Taken together, we can conclude that ATF3 regulates innate immunity positively upon pneumococcus infection by enhancing TNF-α, IL-1β, and IFN-γ expression and modulating bacterial clearance.