EMAIL THIS PAGE TO A FRIEND

Cancer immunology research

The promotion of breast cancer metastasis caused by inhibition of CSF-1R/CSF-1 signaling is blocked by targeting the G-CSF receptor.


PMID 25005824

Abstract

Treatment options are limited for patients with breast cancer presenting with metastatic disease. Targeting of tumor-associated macrophages through the inhibition of colony-stimulating factor-1 receptor (CSF-1R), a key macrophage signaling pathway, has been reported to reduce tumor growth and metastasis, and these treatments are now in clinical trials. Here, we report that, surprisingly, treatment with neutralizing anti-CSF-1R and anti-CSF-1 antibodies, or with two different small-molecule inhibitors of CSF-1R, could actually increase spontaneous metastasis without altering primary tumor growth in mice bearing two independently derived mammary tumors. The blockade of CSF-1R or CSF-1 led to increased levels of serum G-CSF, increased frequency of neutrophils in the primary tumor and in the metastasis-associated lung, as well as increased numbers of neutrophils and Ly6C(hi) monocytes in the peripheral blood. Neutralizing antibody against the G-CSF receptor, which regulates neutrophil development and function, reduced the enhanced metastasis and neutrophil numbers that resulted from CSF-1R blockade. These results indicate that the role of the CSF-1R/CSF-1 system in breast cancer is far more complex than originally proposed, and requires further investigation as a therapeutic target.