EMAIL THIS PAGE TO A FRIEND

Journal of clinical microbiology

Classification algorithm for subspecies identification within the Mycobacterium abscessus species, based on matrix-assisted laser desorption ionization-time of flight mass spectrometry.


PMID 25009048

Abstract

Mycobacterium abscessus, as a species, has been increasingly implicated in respiratory infections, notably in cystic fibrosis patients. The species comprises 3 subspecies, which can be difficult to identify. Since they differ in antibiotic susceptibility and clinical relevance, developing a routine diagnostic tool discriminating Mycobacterium abscessus at the subspecies level is a real challenge. Forty-three Mycobacterium abscessus species isolates, previously identified by multilocus sequence typing, were analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). A subspecies identification algorithm, based on five discriminating peaks, was drawn up and validated by blind identification of a further 49 strains, 94% of which (n = 46) were correctly identified. Two M. abscessus subsp. massiliense strains were misidentified as M. abscessus subsp. abscessus, and for 1 other strain identification failed. Inter- and intralaboratory reproducibility tests were conclusive. This study presents, for the first time, a classification algorithm for MALDI-TOF MS identification of the 3 M. abscessus subspecies. MALDI-TOF MS proved effective in discriminating within the M. abscessus species and might be easily integrated into the workflow of microbiology labs.