EMAIL THIS PAGE TO A FRIEND

Molecular imaging and biology : MIB : the official publication of the Academy of Molecular Imaging

PET imaging of cardiac wound healing using a novel [68Ga]-labeled NGR probe in rat myocardial infarction.


PMID 25011975

Abstract

Peptides containing the asparagine-glycine-arginine (NGR) motif bind to aminopeptidase N (CD13), which is expressed on inflammatory cells, endothelial cells, and fibroblasts. It is unclear whether radiolabeled NGR-containing tracers could be used for in vivo imaging of the early wound-healing phase after myocardial infarction (MI) using positron emission tomography (PET). Uptake of novel tracer [(68)Ga]NGR was assessed together with [(68)Ga]arginine-glycine-aspartic acid ([(68)Ga]RGD) and 2-deoxy-2-[(18) F]fluoro-D-glucose after myocardial ischemia/reperfusion (MI/R) injury using μ-PET and autoradiography, and relative expressions of CD13 and integrin β3 were assessed in fibroblasts, inflammatory cells, and endothelial cells by immunohistochemistry. In the infarcted myocardium, uptake of [(68)Ga]NGR was maximal from days 3 to 7 after MI/R, and correlated with fibroblast and inflammatory cell infiltration as well as [(68)Ga]RGD uptake. [(68)Ga]NGR allows noninvasive and sequential determination of CD13 expression in fibroblasts and inflammatory cells by PET. This will facilitate monitoring of CD13 in the individual wound healing processes, allowing patient-specific therapies to improve outcome after MI.