Cancer letters

Epigenetic silencing of microRNA-373 to epithelial-mesenchymal transition in non-small cell lung cancer through IRAK2 and LAMP1 axes.

PMID 25063738


The role of microRNAs (miRNAs) in carcinogenesis as tumor suppressors or oncogenes has been widely reported. Epigenetic change is one of the mechanisms of transcriptional silencing of miRNAs in cancer. To identify lung cancer-related miRNAs that are mediated by histone modification, we conducted microarray analysis in the Calu-6 non-small cell lung cancer (NSCLC) cell line after treatment with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) inhibitor. The expression level of miR-373 was enhanced by SAHA treatment in this cell line by microarray and the following quantitative RT-PCR analyses. Treatment with another HDAC inhibitor, Trichostatin A, restored the levels of miR-373 expression in A549 and Calu-6 cells, while demethylation drug treatment did not. Importantly, miR-373 was found to be down-regulated in NSCLC tissues and cell lines. Transfection of miR-373 into A549 and Calu-6 cells attenuated cell proliferation, migration, and invasion and reduced the expression of mesenchymal markers. Additional microarray analysis of miR-373-transfected cells and computational predictions identified IRAK2 and LAMP1 as targets of miR-373. Knockdown of these two genes showed similar biological effects to those of miR-373 overexpression. In clinical samples, overexpression of IRAK2 correlated with decreased disease-free survival of patients with non-adenocarcinoma. In conclusion, we found that miR-373 is silenced by histone modification in lung cancer cells and identified its function as a tumor suppressor and negative regulator of the mesenchymal phenotype through downstream IRAK2 and LAMP1 target genes.