EMAIL THIS PAGE TO A FRIEND

Experimental biology and medicine (Maywood, N.J.)

Reduction of nitric oxide level leads to spontaneous resumption of meiosis in diplotene-arrested rat oocytes cultured in vitro.


PMID 25092827

Abstract

The present study was aimed to investigate whether a decrease of nitric oxide (NO) level is beneficial for sponateous resumptiom of meiosis in diplotene-arrested oocytes cultured in vitro. For this purpose, diplotene-arrested oocytes were collected from ovary of immature female rats after a single subcutaneous injection of 20 IU pregnant mare's serum gonadotropins (PMSG) for 48 h. In vitro effects of S-nitroso-l-acetyl penicillamine (SNAP; an NO donor) and aminoguanidine (AG; an inducible NOS [iNOS] inhibitor), intracellular NO, cyclic guanosine monophosphate (cGMP), Cdc25B, Thr-14/Tyr-15 and Thr-161 phosphorylated cyclin-dependent kinase-1 (CDK1), and cyclin B1 levels were analyzed. The SNAP inhibited spontaneous meiotic resumption form diplotene arrest in a concentration-dependent manner, while AG-induced meiotic resumption form diplotene in 0.1 mmol/L 3-isobutyl-1-methylxanthine (IBMX)-treated oocytes in a concentration-dependent manner. The intracellular NO as well as cGMP levels were decreased significantly during spontaneous meiotic resumption from diplotene arrest. The reduction of Cdc25B expression level was associated with the accumulation of Thr-14/Tyr-15 phosphorylated CDK1 level. However, Thr-161 phosphorylated CDK1 as well as cyclin B1 levels were reduced significantly during meiotic resumption from diplotene arrest. Taken together, these data suggest that the inhibition of iNOS expression leads to a decrease of NO and cGMP levels thereby decreasing Cdc25B level. The reduced CDC25 B level leads to accumulation of Thr-14/Tyr-15 phosphorylated CDK1 level. As a result, Thr-161 phosphorylated CDK1 as well as cyclin B1 levels are decreased leading to maturation-promoting factor (MPF) inactivation. The inactive MPF finally induced meiotic resumption from diplotene stage in rat oocytes cultured in vitro.