EMAIL THIS PAGE TO A FRIEND

Clinical and experimental pharmacology & physiology

Pharmacological actions of thymol and an analogue at GABAB autoreceptors.


PMID 25115309

Abstract

GABAB autoreceptors inhibit release of GABA from GABAergic nerve terminals. Agonists of these receptors (e.g. baclofen) inhibit, whereas antagonists (e.g. (+)-(S)-5,5-dimethylmorpholinyl-2-acetic acid; Schxa050911) enhance release of the transmitter. The actions of thymol (2-isopropyl-5-methylphenol) and the structurally related compound 2-tert-butyl-4-methylphenol, (4MP) on the release of [(3) H]-GABA were examined in rat neocortical slices where the GABAergic nerves had been preloaded with [(3) H]-GABA and subsequently stimulated electrically on two occasions (S1 and S2 ). Test agents, baclofen and Schxa050911 were added to the superfusion medium prior to the second period of stimulation (S2 ). Stimulation-induced overflow (SIO) of [(3) H]-GABA as a consequence of these stimulations (SIO1 and SIO2 ) were calculated and the effects of agents determined by comparing the SIO2 /SIO1 ratio in the presence of each agent with that in control tissue. Thymol potentiated the release of [(3) H]-GABA (EC50 170xa0μmol/L), an action reversed by baclofen (2xa0μmol/L). Baclofen alone had little effect on GABA release. Release of [(3) H]-GABA was inhibited by 4MP (IC50 3xa0μmol/L) and this effect was blocked by Schxa050911 (10xa0μmol/L). Alone, Schxa050911 markedly potentiated the release of GABA. These results imply that 4MP is an agonist of GABAB autoreceptors; however, further studies are needed to confirm that thymol is indeed a GABAB autoreceptor antagonist. Of interest are structural differences in these agents. Thymol has a propyl group in the ortho position relative to the phenolic hydroxyl, whereas in 4MP this is a butyl group and the methyl group moves from position 5 to 4. Whether one or both of these changes was responsible for the above actions is unknown.