Toxicology and applied pharmacology

Promoter-region hypermethylation and expression downregulation of Yy1 (Yin yang 1) in preneoplastic liver lesions in a thioacetamide rat hepatocarcinogenesis model.

PMID 25151969


Thioacetamide (TAA) has been used to develop a rodent model for hepatocarcinogenesis. To determine the genes with epigenetic modifications in early hepatocarcinogenesis, we did a genome-wide scan for hypermethylated promoter regions using CpG island microarrays in TAA-promoted rat liver tissue. Eight genes were selected based on the microarray profile; of these, Yy1 and Wdr45b were confirmed to be hypermethylated by methylation-specific polymerase chain reaction (PCR) and pyrosequencing and downregulated by real-time reverse transcription PCR. Non-neoplastic liver cells had nuclear Yy1 immunoreactivity, while preneoplastic foci with glutathione S-transferase placental form (GST-P) immunoreactivity had decreased Yy1 immunoreactivity. The incidence of these foci was proportional to the dose of TAA administered. Co-expression analysis of gene products downstream of Yy1 revealed increased nuclear phospho-c-Myc(+) foci as well as nuclear and cytoplasmic p21(Cip1+) foci in Yy1(-) or GST-P(+) foci in response to TAA-promotion dose. Although the absolute number of cells was low, the incidence of death receptor 5(-) foci was increased in Yy1(-) foci in proportion to the TAA dose. Yy1(-)/GST-P(+) foci revealed a higher number of proliferating cell nuclear antigen (PCNA)-immunoreactive cells than Yy1(+)/GST-P(+) foci, while cleaved caspase-3(+) cells were unchanged between Yy1(-)/GST-P(+) and Yy1(+)/GST-P(+) foci. In the case of Wdr45b, most GST-P(+) foci were Wdr45b(-) and were not increased by TAA promotion. These results suggest involvement of Yy1 in the epigenetic gene regulation at the early stages of TAA promoted cell proliferation and concomitant cell cycle arrest in preneoplastic lesions.