EMAIL THIS PAGE TO A FRIEND

Journal of cellular physiology

The cooperation of CREB and NFAT is required for PTHrP-induced RANKL expression in mouse osteoblastic cells.


PMID 25187507

Abstract

Parathyroid hormone-related protein (PTHrP) is known to induce the expression of receptor activator of NF-κB ligand (RANKL) in stromal cells/osteoblasts. However, the signaling pathways involved remain controversial. In the present study, we investigated the role of cAMP/protein kinase A (PKA) and calcineurin/NFAT pathways in PTHrP-induced RANKL expression in C2C12 and primary cultured mouse calvarial cells. PTHrP-mediated induction of RANKL expression was significantly inhibited by H89 and FK506, an inhibitor of PKA and calcineurin, respectively. PTHrP upregulated CREB phosphorylation and the transcriptional activity of NFAT. Knockdown of CREB or NFATc1 blocked PTHrP-induced RANKL expression. PTHrP increased the activity of the RANKL promoter reporter that contains approximately 2 kb mouse RANKL promoter DNA sequences. Insertions of mutations in CRE-like element or in NFAT-binding element abrogated PTHrP-induced RANKL promoter activity. Chromatin immunoprecipitation assays showed that PTHrP increased the binding of CREB and NFATc1/NFATc3 to their cognate binding elements in the RANKL promoter. Inhibition of cAMP/PKA and its downstream ERK activity suppressed PTHrP-induced expression and transcriptional activity of NFATc1. CREB knockdown prevented PTHrP induction of NFATc1 expression. Furthermore, NFATc1 and CREB were co-immunoprecipitated. Mutations in CRE-like element completely blocked NFATc1-induced transactivation of the RANKL promoter reporter; however, mutations in NFAT-binding element partially suppressed CREB-induced RANKL promoter activity. Overexpression of CREB increased NFATc1 binding to the RANKL promoter and vice versa. These results suggest that PTHrP-induced RANKL expression depends on the activation of both cAMP/PKA and calcineurin/NFAT pathways, and subsequently, CREB and NFAT cooperate to transactivate the mouse RANKL gene.