EMAIL THIS PAGE TO A FRIEND

Molecular human reproduction

Mitochondrial DNA in Day 3 embryo culture medium is a novel, non-invasive biomarker of blastocyst potential and implantation outcome.


PMID 25232043

Abstract

In assisted reproduction technology, embryo competence is routinely evaluated on morphological criteria. Over the last decade, efforts in improving non-invasive embryo assessment have looked into the secretome of embryos. Human embryos release genomic DNA (gDNA) and mitochondrial DNA (mtDNA) into the culture medium, and the mtDNA/gDNA ratio is significantly correlated with embryo fragmentation. Here, we investigate whether mtDNA/gDNA ratio in embryo spent medium is correlated with blastulation potential and implantation. The mtDNA/gDNA ratio was assessed in 699 Day 3 culture media by quantitative polymerase chain reaction (qPCR) to investigate its correlation with embryo morphology, blastocyst development and implantation. A logistic regression model evaluated whether mtDNA/gDNA ratio in the secretome may improve the prediction of blastulation. We found that embryos that successfully developed into blastocysts exhibited a significantly higher mtDNA/gDNA ratio in the culture medium compared with those that arrest (P = 0.0251), and mtDNA/gDNA, combined with morphological grading, has the potential to predict blastulation better than morphology alone (P = 0.02). Moreover, mtDNA/gDNA ratio was higher in the media from good-quality embryos that reached the full blastocyst stage on Day 5 compared with those that developed more slowly (P < 0.0001). With respect to blastocyst morphology, higher trophectoderm quality was associated with a higher mtDNA/gDNA ratio in the culture medium. Finally, a high mtDNA/gDNA ratio in spent medium was associated with successful implantation outcome (P = 0.0452) of good-quality embryos. In summary, the mtDNA/gDNA ratio in the Day 3 embryo secretome, in combination with morphological grading, may be a novel, non-invasive, early biomarker to improve identification of viable embryos with high developmental potential.