Origination of asexual plantlets in three species of Crassulaceae.

PMID 25252887


During asexual plant reproduction, cells from different organs can be reprogrammed to produce new individuals, a process that requires the coordination of cell cycle reactivation with the acquisition of other cellular morphological characteristics. However, the factors that influence the variety of asexual reproduction have not yet been determined. Here, we report on plantlet formation in Kalanchoe daigremontiana, Graptopetalum paraguayense, and Crassula portulacea (Crassulaceae) and analyse the effect of initiating cells on asexual reproduction in these three species. Additionally, the roles of WUSCHEL (WUS) and CUP-SHAPED COTYLEDON 1 (CUC1) in the asexual reproduction of these species were analysed through qRT-PCR. Our results indicated that pre-existing stem cell-like cells at the sites of asexual reproduction were responsible for the formation of plantlets. These cells were arrested in different phases of the cell cycle and showed different cell morphological characteristics and cell counts. The accumulation of auxin and cytokinin at the sites of asexual plantlet formation indicated their important functions, particularly for cell cycle reactivation. These differences may influence the pattern and complexity of asexual reproduction in these Crassulaceae species. Additionally, the dynamic expression levels of CUC1 and WUS may indicate that CUC1 functions in the formation of callus and shoot meristems; whereas, WUS was only associated with shoot induction.