EMAIL THIS PAGE TO A FRIEND

PloS one

Differential susceptibility of human peripheral blood T cells to suppression by environmental levels of sodium arsenite and monomethylarsonous acid.


PMID 25271956

Abstract

Human exposure to arsenic in drinking water is known to contribute to many different health outcomes such as cancer, diabetes, and cardiopulmonary disease. Several epidemiological studies suggest that T cell function is also altered by drinking water arsenic exposure. However, it is unclear how individual responses differ to various levels of exposure to arsenic. Our laboratory has recently identified differential responses of human peripheral blood mononuclear cell (HPMBC) T cells as measured by polyclonal T cell activation by mitogens during sodium arsenite exposure. T cells from certain healthy individuals exposed to various concentrations (1-100 nM) of arsenite in vitro showed a dose-dependent suppression at these extremely low concentrations (∼ 0.1-10 ppb) of arsenite, whereas other individuals were not suppressed at low concentrations. In a series of more than 30 normal donors, two individuals were found to be sensitive to low concentration (10 nM equivalent ∼ 1 ppb drinking water exposure) to sodium arsenite-induced inhibition of T cell proliferation produced by phytohemagglutinin (PHA) and anti-CD3/anti-CD28. In an arsenite-susceptible individual, arsenite suppressed the activation of Th1 (Tbet) cells, and decreased the percentage of cells in the double positive Th17 (RORγt) and Treg (FoxP3) population. While the majority of normal blood donors tested were not susceptible to inhibition of proliferation at the 1-100 nM concentrations of As(+3), it was found that all donors were sensitive to suppression by 100 nM monomethylarsonous acid (MMA+3), a key metabolite of arsenite. Thus, our studies demonstrate for the first time that low ppb-equivalent concentrations of As(+3) are immunosuppressive to HPBMC T cells in some individuals, but that most donor HPBMC are sensitive to suppression by MMA(+3) at environmentally relevant exposure levels.