EMAIL THIS PAGE TO A FRIEND

Chemical & pharmaceutical bulletin

A novel selenadiazole derivative induces apoptosis in human glioma cells by dephosphorylation of AKT.


PMID 25273058

Abstract

Selenadiazole derivatives are synthetic organoselenium compounds with improved anticancer activity and greater selectivity than inorganic selenium. In this study, 4-(benzo[c][1,2,5]selenadiazol-6-yl)-benzene-1,2-diamine (BSBD) was shown to induce time- and dose-dependent apoptosis in SWO-38 human glioma cells by accumulation of a sub-G1 cell population, DNA fragmentation, nuclear condensation, caspase activation and poly(ADP-ribose) polymerase (PARP) cleavage. Further mechanistic investigation showed that BSBD treatment induced dephosphorylation of AKT and DNA damage-mediated activation of p53, leading to extensive apoptosis through the mitochondrial pathway. Our findings suggest that BSBD represents a potential human glioma therapeutic.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

A0466
N-Acetyl-Asp-Glu-Val-Asp-7-amido-4-trifluoromethylcoumarin, ≥90% (HPLC), powder
C30H34F3N5O13