The Journal of nutrition

Plasma phospholipid PUFAs are associated with greater muscle and knee extension strength but not with changes in muscle parameters in older adults.

PMID 25355842


Muscle mass, intermuscular adipose tissue, and strength are important indicators of physical function. Dietary fatty acids (FAs) have been associated with muscle parameters such as larger size and higher strength, but large, population-based longitudinal data in older adults who are at risk of functional decline are lacking. The objective of this study was to investigate associations between plasma phospholipid polyunsaturated fatty acids (PUFAs) and measures of muscle size, intermuscular adipose tissue, and muscle strength cross-sectionally and after 5 y of follow-up. Data are from the Age, Gene/Environment Susceptibility-Reykjavik Study, a prospective cohort aged 66-96 y at baseline. The analytic sample included 836 participants with cross-sectional measures of muscle parameters and 459 participants with data on change in muscle parameters. PUFAs were assessed at study baseline through use of GC. Muscle parameters were assessed at baseline and after a median of 5.2 y. Muscle area and intermuscular adipose tissue were assessed with computed tomography. Maximal grip strength and knee extension strength were assessed with dynometers. Relative changes in muscle parameters (%) were calculated. Multivariate linear regression was performed to calculate unstandardized regression coefficients and P values for trends across tertiles of FAs are reported. Higher concentrations of total PUFAs were cross-sectionally associated with larger muscle size (P-trend: 0.002) and with greater knee extension strength (P-trend: 0.038). Higher concentrations of arachidonic acid were associated with smaller muscle size (P-trend: 0.015). Greater linoleic acid was associated with less intermuscular adipose tissue (P-trend: 0.004), whereas eicosapentaenoic acid (20:5n-3) was positively associated (P-trend: 0.047). Longitudinal analyses showed positive associations for α-linolenic acid with increased knee extension strength (P-trend: 0.014). No other associations were observed. These data illustrate the complex relation between plasma phospholipid PUFAs and muscle parameters; inconsistent cross-sectional relations with muscle size, intermuscular adipose tissue, and strength, and little evidence of a role in changes in muscle parameters.