EMAIL THIS PAGE TO A FRIEND

FASEB journal : official publication of the Federation of American Societies for Experimental Biology

Macrophage polarization phenotype regulates adiponectin receptor expression and adiponectin anti-inflammatory response.


PMID 25392268

Abstract

Adiponectin (APN), a pleiotropic adipokine that exerts anti-inflammatory, antidiabetic, and antiatherogenic effects through its receptors (AdipoRs), AdipoR1 and AdipoR2, is an important therapeutic target. Factors regulating AdipoR expression in monocyte/macrophages are poorly understood, and the significance of polarized macrophage activation in controlling AdipoR expression and the APN-mediated inflammatory response has not been investigated. The aim of this study was to investigate whether the macrophage polarization phenotype controls the AdipoR expression and APN-mediated inflammatory response. With the use of mouse bone marrow and peritoneal macrophages, we demonstrate that classical activation (M1) of macrophages suppressed (40-60% of control) AdipoR expression, whereas alternative activation (M2) preserved it. Remarkably, the macrophage polarization phenotypes produced contrasting inflammatory responses to APN (EC50 5 µg/ml). In M1 macrophages, APN induced proinflammatory cytokines, TNF-α, IL-6, and IL-12 (>10-fold of control) and AdipoR levels. In contrast, in M2 macrophages, APN induced the anti-inflammatory cytokine IL-10 without altering AdipoR expression. Furthermore, M1 macrophages adapt to a cytokine environment by reversing AdipoR expression. APN induced AdipoR mRNA and protein expression by up-regulating liver X receptor-α (LXRα) in macrophages. These results provide the first evidence that macrophage polarization is a key determinant regulating AdipoR expression and differential APN-mediated macrophage inflammatory responses, which can profoundly influence their pathogenic role in inflammatory and metabolic disorders.