EMAIL THIS PAGE TO A FRIEND

The Science of the total environment

Impacts of LUCC on soil properties in the riparian zones of desert oasis with remote sensing data: a case study of the middle Heihe River basin, China.


PMID 25460959

Abstract

Large-scale changes in land use and land cover over long timescales can induce significant variations in soil physicochemical properties, particularly in the riparian zones of arid regions. Frequent reclamation of wetlands and grasslands and intensive agricultural activity have induced significant changes in both land use/cover and soil physicochemical properties in the riparian zones of the middle Heihe River basin of China. The present study aims to explore whether land use/land cover change (LUCC) can well explain the variations in soil properties in the riparian zones of the middle Heihe River basin. To achieve this, we mapped LUCC and quantified the type of land use change using remote sensing images, topographic maps, and GIS analysis techniques. Forty-two sites were selected for soil and vegetation sampling. Then, physical and chemical experiments were employed to determine soil moisture, soil bulk density, soil pH, soil organic carbon, total nitrogen, total potassium, total phosphorous, available nitrogen, available potassium, and available phosphorous. The Independent-Samples Kruskal-Wallis Test, principal component analysis, and a scatter matrix were used to analyze the effects of LUCC on soil properties. The results indicate that the majority of the parameters investigated were affected significantly by LUCC. In particular, soil moisture and soil organic carbon can be explained well by land cover change and land use change, respectively. Furthermore, changes in soil moisture could be attributed primarily to land cover changes. Changes in soil organic carbon were correlated closely with the following land use change types: wetlands-arable, forest-grasslands, and grasslands-desert. Other parameters, including pH and total K, were also found to exhibit significant correlations with LUCC. However, changes in soil nutrients were shown to be induced most probably by human agricultural activity (i.e. fertilize, irrigation, tillage, etc.), rather than by simple conversions from one land use/cover types to the others.