EMAIL THIS PAGE TO A FRIEND

Physiological research

Prophylactic inhalation of L-alanyl-L-glutamine enhances heat shock protein 72 and attenuates endotoxin-induced lung injury in rats.


PMID 25470514

Abstract

Studies have demonstrated that heat shock protein 70 (HSP70) plays an important role in the protection of stressed organisms. The development of strategies for enhancing HSPs expression may provide novel means of minimizing inflammatory lung conditions, such as acute lung injury. This study aimed to examine the effect of L-alanyl-L-glutamine (GLN) inhalation in enhancing pulmonary HSP72 (inducible HSP70) expression and attenuating lung damage in a model of acute lung injury induced by lipopolysaccharide (LPS) inhalation. The experimental rats were randomly assigned to one of four experimental groups: (1) NS: saline inhalation; (2) NS-LPS: pretreatment by saline inhalation 12 h before LPS inhalation; (3) GLN: glutamine inhalation; (4) GLN-LPS: pretreatment by glutamine inhalation 12 h before LPS inhalation. The results show that GLN compared with saline administration, led to significant increase in lung HSP72 both in non LPS-treated rats and LPS-treated rats. In LPS-treated rats, pretreatment by GLN inhalation produced less lung injury as evidenced by the decrease in lung injury score and dramatic decrease in lactate dehydrogenase (LDH) activity and polymorphonuclear leukocyte cell differentiation counts (PMN %) in the bronchoalveolar lavage fluid. The study indicates that prophylactic glutamine inhalation associated with the enhancement of HSP72 synthesis attenuates tissue damage in experimental lung injury.