EMAIL THIS PAGE TO A FRIEND

Islets

Overexpression of PAX4 reduces glucagon expression in differentiating hESCs.


PMID 25483960

Abstract

Human embryonic stem cells (hESCs) are pluripotent and capable of generating new β-cells, but current in vitro differentiation protocols generally fail to produce mature, glucose-responsive, unihormonal β-cells. Instead, these methods tend to produce immature polyhormonal endocrine cells which mature in vivo into glucagon-positive α-cells. PAX4 is an established transcription factor in β-cell development and function, and is capable of converting glucagon-positive cells to insulin-positive cells in mice. Work in human and mouse ESCs has shown that constitutive PAX4 expression promotes the development of insulin-positive cells, but whether acute PAX4 expression is sufficient to guide specific endocrine cell fates has not been addressed in hESCs. In this study, we applied recombinant adenovirus to ectopically express human PAX4 in hESC-derived pancreatic progenitors, with the aim of influencing the endocrine developmental cascade away from polyhormonal cells toward unihormonal insulin-positive cells. Gene delivery to pancreatic progenitors was efficient and dose-dependent. By the end of in vitro differentiation, PAX4 reduced ARX expression, but only the high dose tested significantly reduced glucagon release. Single cell analysis revealed that while PAX4 did not alter the proportion of endocrine cells, it did reduce the number of glucagon-positive cells and increased the number of unihormonal insulin-positive cells. These data suggest that acute PAX4 overexpression can reduce expression of ARX and glucagon resulting in improved numbers of unihormonal insulin-positive cells.