EMAIL THIS PAGE TO A FRIEND

Life sciences

Pseudolaric acid B inhibits T-cell mediated immune response in vivo via p38MAPK signal cascades and PPARγ activation.


PMID 25497712

Abstract

Pseudolaric acid B (PAB) has been prescribed for its potent immunomodulatory effect. However, the detail of mechanism remains to be demonstrated. The purpose of this study is to further clarify the mechanism of PAB on T-cell mediated immune response in vivo. Investigations were carried to ascertain the pharmacological effect of PAB in a delayed-type hypersensitivity (DTH) mouse model of T-cell mediated immune response. Histological assessment was examined by hematoxylin and eosin staining. Affymetrix GeneChip® Mouse Genome 430 2.0 arrays were employed to evaluate the expression profile of PAB. Western blot was performed to detect p38MAPK signal cascades, including p38MAPK, ATF-2, MK2, and HSP27. Finally, TNF-α level was analyzed by ELISA, and Jurkat T cells were treated with PAB to determine its role on PPARγ activation using a reporter gene assay. The results showed that PAB (5, 10, and 20mg/kg) could lead to a marked improvement for ear swelling and inflammatory infiltrate in DTH mice dose-dependently. According to the associated biological pathways from microarray analysis, PAB resulted in the restoration of abnormal immune-related gene expression linked to MAPK and PPAR signaling pathways. Moreover, PAB inhibited the activation of p38MAPK, ATF-2, MK2, and HSP27 significantly, as well as the production of TNF-α, which was reversed by GW9662, a specific antagonist for PPARγ. In addition, treatment with PAB also increased the transcriptional activity of PPARγ in a dose-dependent manner. These results provide us with novel insights into pharmacological action of PAB as a potential immunomodulator for the treatment of immune-related diseases.