EMAIL THIS PAGE TO A FRIEND

Journal of animal science

Spray-dried plasma attenuates inflammation and improves pregnancy rate of mated female mice.


PMID 25568378

Abstract

Three studies were conducted to test the hypothesis that dietary spray-dried plasma (SDP) might improve pregnancy rate by ameliorating inflammation, using mice in an experimental model that produces a low pregnancy rate. Mated female mice (C57BL/6 strain) were purchased and shipped from a vendor (Bar Harbor, ME) to the university facility (Urbana, IL) on the day the vaginal plug was found (gestation day [GD] 1), arriving at the laboratory on GD 3 after 2 d transport by air and ground. Mice (Exp. 1: n = 250, 16.0 ± 1.2 g BW; Exp. 2: n = 202, 16.2 ± 1.2 g BW; Exp. 3: n = 156, 16.4 ± 1.1 g BW) were housed in individual cages and randomly assigned to dietary treatments (Exp. 1: 0 [CON] and 8% SDP in the diet, ≥ 90 mice/diet; Exp. 2: 0, 1, 2, 4, and 8% SDP in the diet, ≥ 40 mice/diet; Exp. 3: 0, 1, and 8% SDP in the diet, 48 mice/diet) fed from arrival. In Exp. 1 and 2, pregnancy of each mouse was determined on GD 17 based on BW, shape of abdomen, and inspection postmortem, and maternal growth performance from GD 3 to 17 was measured. On GD 19, pregnant mice in Exp. 2 were euthanized to measure number of fetuses and fetal and placental weights. Pregnancy rates in CON were low in both Exp. 1 (11%) and Exp. 2 (7%). The SDP consistently and markedly increased (P < 0.05) pregnancy rates in both Exp. 1 (49%) and Exp. 2 (35-43%) compared with the CON. In Exp. 3, 12 randomly selected mice were euthanized immediately after they arrived as an initial group. From GD 4 to 7, randomly selected mice were also euthanized each day (12 mice/diet). After euthanasia, the abdominal cavity was opened to check pregnancy by uterine inspection and to collect blood and uterus samples for immune measurements. The SDP increased (P < 0.05; 40 vs. 15%) pregnancy rate compared with the CON. Concentrations of indicators of inflammation and stress (uterine TNF-α and IFN-γ, and serum TNF-α, C-reactive protein, and cortisol) were greatest (P < 0.05) and an anti-inflammatory cytokine (TGF-β1) was lowest (P < 0.05) soon after arrival, on GD 3 or 4. The SDP decreased (P < 0.05) the uterine concentrations of TNF-α and IFN-γ, and serum TNF-α, C-reactive protein, and cortisol, compared with the CON, but increased (P < 0.05) the uterine concentration of TGF-β1. In conclusion, dietary SDP improves the low pregnancy rates in this model, apparently by attenuating inflammation.