EMAIL THIS PAGE TO A FRIEND

Radiation research

PicoGreen assay of circular DNA for radiation biodosimetry.


PMID 25574588

Abstract

We developed a simple, rapid and quantitative assay using the fluorescent probe PicoGreen to measure the concentration of ionizing radiation-induced double-stranded DNA (dsDNA) in mouse plasma, and we correlated this concentration with the radiation dose. With 70 μl of blood obtained by fingerstick, this 30 min assay reduces protein interference without extending sample processing time. Plasma from nonirradiated mice (BALB/c and NIH Swiss) was pooled, diluted and spiked with dsDNA to establish sensitivity and reproducibility of the assay to quantify plasma dsDNA. The assay was then used to directly quantify dsDNA in plasma at 0-48 h after mice received 0-10 Gy total-body irradiation (TBI). There are three optimal conditions for this assay: 1:10 dilution of plasma in water; 1:200 dilution of PicoGreen reagent in water; and calibration of radiation-induced dsDNA concentration through a standard addition method using serial spiking of samples with genomic dsDNA. Using the internal standard calibration curve of the spiked samples method, the signal developed within 5 min, exhibiting a linear signal (r(2) = 0.997). The radiation-induced elevation of plasma DNA in mice started at 1-3 h, peaked at 9 h and gradually returned to baseline at 24 h after TBI (6 Gy). DNA levels in plasma collected from mice 9 h after 0-10 Gy TBI correlated strongly with dose (r(2) = 0.991 and 0.947 for BALB/c and NIH Swiss, respectively). Using the PicoGreen assay, we observed a radiation dose-dependent response in extracellular plasma DNA 9 h after irradiation with an assay time ≤ 30 min.