EMAIL THIS PAGE TO A FRIEND

Arthritis research & therapy

Overexpression of cystatin C in synovium does not reduce synovitis or cartilage degradation in established osteoarthritis.


PMID 25592743

Abstract

Cathepsin K (catK) expression is increased in cartilage, bone and synovium during osteoarthritis (OA). To study the role of catK expression and elevated cathepsin activity in the synovium on cartilage destruction in established OA, we overexpressed cystatin C (cysC), a natural cysteine protease inhibitor, in the synovium of rabbit OA joints. The ability of cysC to inhibit activity of cathepsins in rabbit OA synovium lysates was tested in vitro using protease activity assay. In vivo, the tissue localization of recombinant adeno-associated virus (rAAV) with LacZ gene after intra-articular injection was determined by β-galactosidase staining of rabbit joints 4 weeks later. To inhibit cathepsin activity in the synovium, a rAAV2-encoding cysC was delivered intra-articularly into rabbit joints 4 weeks after OA was induced by anterior cruciate ligament transection (ACLT). Seven weeks postinjection, endogenous catK and cysC levels as well as the vector-derived cysC expression in the synovium of normal and OA joints were examined by RNA quantification. Synovial cathepsin activity and catK, catB and catL protein levels were determined by activity and Western blot analyses, respectively. Synovitis and cartilage degradation were evaluated by histopathological scoring. In vitro, the ability of cysC to efficiently inhibit activity of purified catK and OA-induced cathepsins in rabbit synovial lysates was demonstrated. In vivo, the intra-articular delivery of rAAV2/LacZ showed transduction of mostly synovium. Induction of OA in rabbit joints resulted in fourfold increase in catK mRNA compared to sham controls while no change was detected in endogenous cysC mRNA levels in the synovium. Protein levels for catK, catB and catL were also increased in the synovium with a concomitant fourfold increase in cathepsin activity. Joints treated with rAAV2/cysC showed both detection of vector genomes and vector-derived cysC transcripts in the synovium. Production of functional cysC by the vector was demonstrated by complete block of cathepsin activity in the synovium. However, this did not decrease synovitis, bone sclerosis or progression of cartilage degradation. Increased production of natural cathepsin inhibitor, cysC, in OA synovium does not alleviate synovitis or cartilage pathology during a preexisting OA.