EMAIL THIS PAGE TO A FRIEND

Journal of the neurological sciences

Neuroinflammation and neuronal autophagic death were suppressed via Rosiglitazone treatment: New evidence on neuroprotection in a rat model of global cerebral ischemia.


PMID 25623802

Abstract

Ischemic stroke is one of the leading causes of mortality and disability with documented high incidence and relapse rate. Accumulating evidence indicates that autophagy participated in neuronal cell death and functional loss induced following ischemia/reperfusion (I/R) injury. The peroxisome proliferating activating receptor-γ (PPAR-γ) agonist, Rosiglitazone (RSG), is known for its anti-inflammatory actions. Previous studies have demonstrated that RSG can exert neuroprotection in animal models of both chronic brain injuries and acute brain insults. However, whether RSG treatment is involved in the autophagic neuronal death following I/R injury remains totally unclear. The present study aimed to hypothesize that treatment of RSG could induce neuroprotective properties in a rat model of global cerebral ischemia (GCI), and thereby to investigate the underline mechanisms. We found that a single injection of RSG immediately following GCI significantly reduced cerebral infarct volume and brain edema, as well as increased neuron survival rate and function recovery. These effects correlate with a decrease of inflammatory cytokines and autophagy-associated proteins expression in the hippocampus region. Our results provide in vivo evidence that RSG significantly protected rats against I/R injury induced brain injury, and the mechanism might associate with inhibiting the processes of neuroinflammation and thereby attenuated of neuronal autophagic death. All data suggest that RSG can be further developed as a clinical neuroprotective candidate in ischemic stroke.