EMAIL THIS PAGE TO A FRIEND

The Biochemical journal

PAQR3 modulates H3K4 trimethylation by spatial modulation of the regulatory subunits of COMPASS-like complexes in mammalian cells.


PMID 25706881

Abstract

Histone modification plays important roles in many biological processes such as development and carcinogenesis. Methylation of histone H3 lysine 4 (H3K4) is commonly associated with transcriptional activation of genes. H3K4 methylation in mammalian cells is carried out by COMPASS (complex of proteins associated with Set1)-like complexes that are composed of catalytic subunits such as MLL1 (mixed-lineage leukaemia 1) and multiple regulatory subunits in which WDR5 (WD40 repeat-containing protein 5), RBBP5 (retinoblastoma-binding protein 5), ASH2 (absent, small or homoeotic discs 2) and DPY30 [constituting the WRAD sub-complex (WDR5-ASH2-RBBP5-DPY30 complex)] are the major ones shared from yeast to metazoans. We report, in the present paper, a new mode of spatial regulation of H3K4 methyltransferase complexes. PAQR3 (progestin and adipoQ receptors member 3), a tumour suppressor specifically localized in the Golgi apparatus, negatively regulates H3K4 trimethylation (H3K4me3) in mammalian cells. Consistently, HOXC8 and HOXA9 gene expression was negatively regulated by PAQR3 expression levels. Hypoxia-induced H3K4me3 was augmented by PAQR3 knockdown and suppressed by PAQR3 overexpression in AGS gastric cancer cells. PAQR3 was able to interact directly or indirectly with the four members of the WRAD sub-complex and tether them to the Golgi apparatus, accompanied by reduction in histone methyltransferase activity in the nucleus. PAQR3 also interfered with the interaction of WDR5 with the C-terminus of MLL1 (C-ter). Collectively, our study indicates that PAQR3 negatively modulates H3K4 methylation via altering the subcellular compartmentalization of the core regulatory subunits of the COMPASS-like complexes in mammalian cells.