EMAIL THIS PAGE TO A FRIEND

Clinical cancer research : an official journal of the American Association for Cancer Research

miR-137 and miR-197 Induce Apoptosis and Suppress Tumorigenicity by Targeting MCL-1 in Multiple Myeloma.


PMID 25724519

Abstract

Deregulation of miRNA has been implicated in the pathogenesis of multiple myeloma. We identified miR-137 and miR-197, mapped to the chromosome 1p (12)-(21) deletion region, and examined their antimyeloma activity as tumor suppressors. The expression of miR-137/197 was examined in multiple myeloma and normal plasma cells by qRT-PCR. Functional effect of miR-137/197 was analyzed by cell viability, apoptosis, clonogenic, and migration assays. Antimyeloma activity of miR-137/197 was further evaluated in vivo by lentiviral-based or lipid-based delivery in a mouse xenograft model of multiple myeloma. miR-137/197 expression was significantly lower in multiple myeloma cell lines and multiple myeloma patient samples compared with normal plasma cells. Transfection of miR-137/197 resulted in reduction of MCL-1 protein expression, as well as alteration of apoptosis-related genes, and induction of apoptosis, inhibition of viability, colony formation, and migration in multiple myeloma cells. MCL-1 was further validated as a direct target of miR-137/197. Conversely, overexpression of MCL-1 partially reverted the effect of miR-137/197. Importantly, in vivo lentiviral-mediated or intratumor delivery of miR-137/197 induced regression of tumors in murine xenograft models of multiple myeloma. Our study reveals a novel role of miR-137/197 as tumor suppressors in mediating apoptosis in multiple myeloma cells by targeting MCL-1. Our findings provide a proof-of-principle that lentivirus-based or formulated synthetic miR-137/197 exerts therapeutic activity in preclinical models, and support a framework for development of miR-137/197-based treatment strategies in patients with multiple myeloma.