EMAIL THIS PAGE TO A FRIEND

Journal of bioscience and bioengineering

Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of Cryptococcus humicola response to aluminum stress.


PMID 25747181

Abstract

Cryptococcus humicola is a highly aluminum (Al) tolerant yeast strain isolated from a tea field. Here the relative changes of protein expression in C.xa0humicola undergoing aluminum stress were analyzed to understand the genetic basis of aluminum tolerance. In this work, iTRAQ-based (isobaric tags for relative and absolute quantification) quantitative proteomic technology was used to detect statistically significant proteins associated with the response to aluminum stress. A total of 625 proteins were identified and were mainly involved in translation/ribosomal structure and biogenesis, posttranslational modification/protein turnover/chaperones, energy production and conversion, and amino acid transport and metabolism. Of these proteins, 59 exhibited differential expression during aluminum stress. Twenty-nine proteins up-regulated by aluminum were mainly involved in translation/ribosomal structure and biogenesis, posttranslational modification/protein turnover and chaperones, and lipid transport and metabolism. Thirty proteins down-regulated by aluminum were mainly associated with energy transport and metabolism, translation/ribosomal structure and biogenesis, posttranslational modification/protein turnover/chaperones, and lipid transport and metabolism. The potential functions of some proteins in aluminum tolerance are discussed. These functional changes may be beneficial for cells to protect themselves from aluminum toxic conditions.