EMAIL THIS PAGE TO A FRIEND

Progress in neuro-psychopharmacology & biological psychiatry

Neuroendocrine regulation of the stress response in adult zebrafish, Danio rerio.


PMID 25748166

Abstract

The main objectives of this study were to investigate the dynamics of the cortisol stress response and the underlying molecular regulation in adult zebrafish exposed to acute and long-term stressors that differed in nature, duration and relative intensity. Fish showed a very rapid and prolonged increase in trunk cortisol concentrations, starting at around 15min and returning to basal levels at around 2h following exposure to acute stressors. In addition, acute stress affected significantly brain mRNA expression levels of several genes (corticotropin-releasing factor, crf; pro-opiomelanocortin, pomc; glucocorticoid receptor, gr; MR/GR ratio; prolactin, prl; hypocretin/orexin, hcrt; brain-derived neurotrophic factor, bdnf; c-fos). Exposure of fish to unpredictable relatively low-grade environmental and husbandry stressors (SP-1) did not affect the overall behaviour of fish, as well as trunk cortisol concentrations. Fish exposed to relatively higher-grade long-term stressors (SP-2) showed elevated cortisol levels as well as significant changes in most of gene transcripts. In particular, fish exposed to SP-2 showed statistically significant upregulation in brain gr, mr, prl and hcrt compared to SP-1 and control individuals. The highest mean values of bdnf transcripts were found in SP-2 exposed zebrafish and the lowest in control fish, while an approximately 5 to 6-fold upregulation was observed in c-fos mean relative mRNA levels of long-term stress-exposed fish, regardless of stressor intensity, compared to control zebrafish. In conclusion, we developed realistic acute and unpredictable long-term stress protocols, based on husbandry and environmental stressors and physical, chemical, mechanical and social stimuli that fish may experience either in nature or under intensive rearing conditions.