Annals of clinical and translational neurology

Expression of FSHD-related DUX4-FL alters proteostasis and induces TDP-43 aggregation.

PMID 25750920


Pathogenesis in facioscapulohumeral muscular dystrophy (FSHD) appears to be due to aberrant expression, particularly in skeletal muscle nuclei, of the full-length isoform of DUX4 (DUX4-FL). Expression of DUX4-FL is known to alter gene expression and to be cytotoxic, but cell responses to DUX4-FL are not fully understood. Our study was designed to identify cellular mechanisms of pathogenesis caused by DUX4-FL expression. We used human myogenic cell cultures to analyze the effects of DUX4-FL when it was expressed either from its endogenous promoter in FSHD cells or by exogenous expression using BacMam vectors. We focused on determining the effects of DUX4-FL on protein ubiquitination and turnover and on aggregation of TDP-43. Human FSHD myotubes with endogenous DUX4-FL expression showed both altered nuclear and cytoplasmic distributions of ubiquitinated proteins and aggregation of TDP-43 in DUX4-FL-expressing nuclei. Similar changes were found upon exogenous expression of DUX4-FL, but were not seen upon expression of the non-toxic short isoform DUX4-S. DUX4-FL expression also inhibited protein turnover in a model system and increased the amounts of insoluble ubiquitinated proteins and insoluble TDP-43. Finally, inhibition of the ubiquitin-proteasome system with MG132 produced TDP-43 aggregation similar to DUX4-FL expression. Our results identify DUX4-FL-induced inhibition of protein turnover and aggregation of TDP-43, which are pathological changes also found in diseases such as amyotrophic lateral sclerosis and inclusion body myopathy, as potential pathological mechanisms in FSHD.