Journal of translational medicine

Detecting primitive hematopoietic stem cells in total nucleated and mononuclear cell fractions from umbilical cord blood segments and units.

PMID 25784613


Rare hematopoietic stem cell populations are responsible for the transplantation engraftment process. Umbilical cord blood (UCB) is usually processed to the total nucleated cell (TNC), but not to the mononuclear cell (MNC) fraction. TNC counts are used to determine UCB unit storage, release for transplantation and correlation with time to engraftment. However, the TNC fraction contains varying concentrations of red blood cells, granulocytes, platelets and other cells that dilute and mask the stem cells from being detected. This does not allow the quality and potency of the stem cells to be reliably measured. 63 UCB segments and 10 UCB units plus segments were analyzed for the response of both primitive lympho-hematopoietic and primitive hematopoietic stem cells in both the TNC and MNC fractions. The samples were analyzed using a highly sensitive, standardized and validated adenosine triphosphate (ATP) bioluminescence stem cell proliferation assay verified against the colony-forming unit (CFU) assay. Dye exclusion and metabolic viability were also determined. Regardless of whether the cells were derived from a segment or unit, the TNC fraction always produced a significantly lower and more variable stem cell response than that derived from the MNC fraction. Routine dye exclusion cell viability did not correspond with metabolic viability and stem cell response. Paired UCB segments produced highly variable results, and the UCB segment did not produce similar results to the unit. The TNC fraction underestimates the ability and capacity of the stem cells in both the UCB segment and unit and therefore provides an erroneous interpretation of the of the results. Dye exclusion viability can result in false positive values, when in fact the stem cells may be dead or incapable of proliferation. The difference in response between the segment and unit calls into question the ability to use the segment as a representative sample of the UCB unit. It is apparent that present UCB processing and testing methods are inadequate to properly determine the quality and potency of the unit for release and use in a patient.